题目内容
【题目】已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).
(1)如图1,若n=﹣2,且两个函数的图象都经过点A(3,4).
①求m、k的值;
②直接写出当y1>y2时x的范围: ;
(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B、与反比例函数y3=(x>0)的图象相交于点C.
①若k=2,直线l与函数,的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;
②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.
【答案】(1)①m=12, k=2;②x>3;(2)①m﹣n=1或4;②k=1,d=1.
【解析】
(1)①将点A的坐标分别代入一次函数表达式和反比例函数表达式,即可求解;
②根据函数图象可直接得出答案;
(2)①BD=2+nm,BC=mn,DC=2+nn=2,由BD=BC或BD=DC或BC=CD得:m﹣n=1或0或2或4,舍去不合题意的情况即可求解;
②点E的坐标为(,m),d=BC+BE=mn+(1)=1+(mn)(1),即可求解.
(1)①若n=﹣2,将点A(3,4)代入一次函数y1=kx+n(n<0)得:3k﹣2=4,
解得:k=2,
将点A(3,4)代入反比例函数得:m=3×4=12;
②由图象可得:x>3时,y1>y2;
故答案为:x>3;
(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),
则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2
则BD=BC或BD=DC或BC=CD,
即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,
即:m﹣n=1或0或2或4,
当m﹣n=0时,m=n与题意不符,
点D不能在C的下方,即BC=CD也不存在,n+2>n,故m﹣n=2不成立,
故m﹣n=1或4;
②点E的横坐标为:,
当点E在点B左侧时,
d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),
m﹣n的值取不大于1的任意数时,d始终是一个定值,
当1﹣=0时,此时k=1,从而d=1.
当点E在点B右侧时,
同理BC+BE=(m﹣n)(1+)﹣1,
当1+=0,k=﹣1时,(不合题意舍去)
故k=1,d=1.