ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªËıßÐÎABCDÊǵÈÑüÌÝÐΣ¬A¡¢BÔÚxÖáÉÏ£¬DÔÚyÖáÉÏ£¬AB¡ÎCD£¬AD=BC=
£¬AB=5£¬CD=3£¬Å×ÎïÏßy=-x2+bx+c¹ýA¡¢BÁ½µã£®
£¨1£©Çób¡¢c£»
£¨2£©ÉèMÊÇxÖáÉÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¬Ëüµ½xÖáÓëyÖáµÄ¾àÀëÖ®ºÍΪd£¬ÇódµÄ×î´óÖµ£»
£¨3£©µ±£¨2£©ÖÐMµãÔ˶¯µ½Ê¹dÈ¡×î´óֵʱ£¬´Ëʱ¼ÇµãMΪN£¬ÉèÏ߶ÎACÓëyÖá½»ÓÚµãE£¬FΪÏ߶ÎECÉÏÒ»¶¯µã£¬ÇóFµ½NµãÓëµ½yÖáµÄ¾àÀëÖ®ºÍµÄ×îСֵ£¬²¢Çó´ËʱFµãµÄ×ø±ê£®
17 |
£¨1£©Çób¡¢c£»
£¨2£©ÉèMÊÇxÖáÉÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¬Ëüµ½xÖáÓëyÖáµÄ¾àÀëÖ®ºÍΪd£¬ÇódµÄ×î´óÖµ£»
£¨3£©µ±£¨2£©ÖÐMµãÔ˶¯µ½Ê¹dÈ¡×î´óֵʱ£¬´Ëʱ¼ÇµãMΪN£¬ÉèÏ߶ÎACÓëyÖá½»ÓÚµãE£¬FΪÏ߶ÎECÉÏÒ»¶¯µã£¬ÇóFµ½NµãÓëµ½yÖáµÄ¾àÀëÖ®ºÍµÄ×îСֵ£¬²¢Çó´ËʱFµãµÄ×ø±ê£®
£¨1£©Ò×µÃA£¨-1£¬0£©B£¨4£¬0£©£¬
°Ñx=-1£¬y=0£»
x=4£¬y=0·Ö±ð´úÈëy=-x2+bx+c£¬
µÃ
£¬
½âµÃ
£®£¨3·Ö£©
£¨2£©ÉèMµã×ø±êΪ£¨a£¬-a2+3a+4£©£¬
d=|a|-a2+3a+4£®
¢Ùµ±-1£¼a¡Ü0ʱ£¬d=-a2+2a+4=-£¨a-1£©2+5£¬
ËùÒÔ£¬µ±a=0ʱ£¬dÈ¡×î´óÖµ£¬ÖµÎª4£»
¢Úµ±0£¼a£¼4ʱ£¬d=-a2+4a+4=-£¨a-2£©2+8
ËùÒÔ£¬µ±a=2ʱ£¬dÈ¡×î´óÖµ£¬×î´óֵΪ8£»
×ۺϢ١¢¢ÚµÃ£¬dµÄ×î´óֵΪ8£®
£¨²»ÌÖÂÛaµÄÈ¡ÖµÇé¿öµÃ³öÕýÈ·½á¹ûµÄµÃ2·Ö£©
£¨3£©NµãµÄ×ø±êΪ£¨2£¬6£©£¬
¹ýA×÷yÖáµÄƽÐÐÏßAH£¬¹ýF×÷FG¡ÍyÖá½»AHÓÚµãQ£¬¹ýF×÷FK¡ÍxÖáÓÚK£¬
¡ß¡ÏCAB=45¡ã£¬ACƽ·Ö¡ÏHAB£¬
¡àFQ=FK
¡àFN+FG=FN+FK-1£¬
ËùÒÔ£¬µ±N¡¢F¡¢KÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬FN+FG=FN+FK-1×îС£¬×îСֵΪ5£®
Ò×ÇóÖ±ÏßACµÄº¯Êý¹ØϵʽΪy=x+1£¬°Ñx=2´úÈëy=x+1µÃy=3£¬
ËùÒÔFµãµÄ×ø±êΪ£¨2£¬3£©£®
°Ñx=-1£¬y=0£»
x=4£¬y=0·Ö±ð´úÈëy=-x2+bx+c£¬
µÃ
|
½âµÃ
|
£¨2£©ÉèMµã×ø±êΪ£¨a£¬-a2+3a+4£©£¬
d=|a|-a2+3a+4£®
¢Ùµ±-1£¼a¡Ü0ʱ£¬d=-a2+2a+4=-£¨a-1£©2+5£¬
ËùÒÔ£¬µ±a=0ʱ£¬dÈ¡×î´óÖµ£¬ÖµÎª4£»
¢Úµ±0£¼a£¼4ʱ£¬d=-a2+4a+4=-£¨a-2£©2+8
ËùÒÔ£¬µ±a=2ʱ£¬dÈ¡×î´óÖµ£¬×î´óֵΪ8£»
×ۺϢ١¢¢ÚµÃ£¬dµÄ×î´óֵΪ8£®
£¨²»ÌÖÂÛaµÄÈ¡ÖµÇé¿öµÃ³öÕýÈ·½á¹ûµÄµÃ2·Ö£©
£¨3£©NµãµÄ×ø±êΪ£¨2£¬6£©£¬
¹ýA×÷yÖáµÄƽÐÐÏßAH£¬¹ýF×÷FG¡ÍyÖá½»AHÓÚµãQ£¬¹ýF×÷FK¡ÍxÖáÓÚK£¬
¡ß¡ÏCAB=45¡ã£¬ACƽ·Ö¡ÏHAB£¬
¡àFQ=FK
¡àFN+FG=FN+FK-1£¬
ËùÒÔ£¬µ±N¡¢F¡¢KÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬FN+FG=FN+FK-1×îС£¬×îСֵΪ5£®
Ò×ÇóÖ±ÏßACµÄº¯Êý¹ØϵʽΪy=x+1£¬°Ñx=2´úÈëy=x+1µÃy=3£¬
ËùÒÔFµãµÄ×ø±êΪ£¨2£¬3£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿