题目内容

【题目】如图,点P( +1, ﹣1)在双曲线y= (x>0)上.

(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y轴的正半轴上,求点C的坐标.

【答案】
(1)解:点P( )在双曲线 上,

将x= ,y= 代入解析式可得:

k=2;


(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,

∵四边形ABCD是正方形,

∴AB=AD=BC,∠CBA=90°,

∴∠FBC+∠OBA=90°,

∵∠CFB=∠BOA=90°,

∴∠FCB+∠FBC=90°,

∴∠FBC=∠OAB,

在△CFB和△AOB中,

∴△CFB≌△AOB(AAS),

同理可得:△BOA≌△AED≌△CFB,

∴CF=OB=AE=b,BF=OA=DE=a,

设A(a,0),B(0,b),

则D(a+b,a)C(b,a+b),

可得:b(a+b)=2,a(a+b)=2,

解得:a=b=1.

所以点C的坐标为:(1,2).


【解析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网