题目内容

【题目】已知球O的半径为1,A,B是球面上的两点,且AB= ,若点P是球面上任意一点,则 的取值范围是(
A.[ ]
B.[ ]
C.[0, ]
D.[0, ]

【答案】B
【解析】解:∵OA=OB=1,AB= , ∴cos∠AOB= =﹣ ,即∠AOB=120°,
以球心O为原点,以平面AOB的垂线为竖轴建立空间坐标系,
设A(1,0,0),B(﹣ ,0),P(x,y,z)
=(1﹣x,﹣y,﹣z), =(﹣ ﹣x, ﹣y,﹣z),且x2+y2+z2=1,
=(1﹣x)(﹣ ﹣x)﹣y( ﹣y)+z2=x2+y2+z2 (x+ y)﹣ = (x+ y).
∵P(x,y,z)是球上的一点,∴x2+y2≤1,
设m=x+ ,则当直线x+ y﹣m=0与圆x2+y2=1相切时,m取得最值,
=1,∴﹣2≤m≤2,
∴当m=﹣2时, 取得最大值 ,当m=2时, 取得最小值﹣
故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网