题目内容
【题目】如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.
(1)求点B的坐标和双曲线的解析式;
(2)判断点C是否在双曲线上,并说明理由.
【答案】
(1)
解:∵AB∥x轴,
∴∠ABO=∠BOD,
∵∠ABO=∠CBD,
∴∠BOD=∠OBD,
∵OB=BD,
∴∠BOD=∠BDO,
∴△BOD是等边三角形,
∴∠BOD=60°,
∴B(1,);
∵双曲线y=经过点B,
∴k=1×=.
∴双曲线的解析式为y=.
(2)
解:∵∠ABO=60°,∠AOB=90°,
∴∠A=30°,
∴AB=2OB,
∵AB=BC,
∴BC=2OB,
∴OC=OB,
∴C(﹣1,),
∵﹣1×()=,
∴点C在双曲线上.
【解析】(1)先求得△BOD是等边三角形,即可求得B的坐标,然后根据待定系数法即可求得双曲线的解析式;
(2)求得OB=OC,即可求得C的坐标,根据C的坐标即可判定点C是否在双曲线上.
练习册系列答案
相关题目