题目内容
【题目】如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.
(1)求这两个函数解析式.
(2)求的面积.
(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。
【答案】(1)正比例函数解析式为;一次函数解析式为;(2);(3)M(10,0)或M(-10,0)或M(0,10)或M(0,-10)或(16,0)或(0,12)
【解析】
(1)将A点坐标分别代入正比例函数和一次函数解析式,即可得解;
(2)首先根据题意求出点B和C的坐标,即可得出BC,进而得出△OBC的面积;
(3)首先根据点A坐标求出OA,即可得出腰长,然后分情况讨论:x轴和y轴,即可得解.
(1)根据题意,将分别代入正比例函数和一次函数解析式,得
,解得
正比例函数解析式为
,解得
一次函数解析式为
(2)根据题意,得
,
∴
∴
(3)根据题意,得OA=10
当点M在x轴上时,其坐标为M(10,0)或M(-10,0)或(16,0);
当点M在y轴上时,其坐标为M(0,10)或M(0,-10)或(0,12);
故点M的坐标为(10,0)或(-10,0)或(0,10)或(0,-10)或(16,0)或(0,12)
【题目】红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:
时间(天) | 1 | 3 | 6 | 10 | 36 | … |
日销售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究 这种商品的有关问题.
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.