题目内容
【题目】如图,已知数轴上点表示的数为10,是数轴上位于点左侧一点,且,动点从点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)数轴上的点表示的数是___________,点表示的数是__________(用含的代数式表示);
(2)若为线段的中点,为线段的中点,在点运动的过程中,线段的长度是__________;
(3)动点从点处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点同时发出,问点运动多少秒时与点相距4个单位长度?
【答案】(1))-20,10-5t;(2)15;(3)13或17秒.
【解析】
(1)根据两点距离公式求出B点表示的数,根据P点比A点表示的数小5t求出P点;
(2)根据中点公式求出M,N两点表示的数,再根据两点距离公式求得MN即可;
(3)根据P点在Q点左边和P点在Q点右边分别列方程解答即可.
解:(1)∵点A表示的数为10,B在A点左边,AB=30,
∴数轴上点B表示的数为10-30=-20;
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数为10-5t;
故答案为:-20,10-5t;
(2)线段MN的长度不发生变化,都等于15.理由如下:
①当点P在点A、B两点之间运动时,
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;
②当点P运动到点B的左侧时:
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,
∴综上所述,线段MN的长度不发生变化,其值为15.
(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.
①点P、Q相遇之前,
由题意得4+5t=30+3t,解得t=13;
②点P、Q相遇之后,
由题意得5t-4=30+3t,解得t=17.
答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;