题目内容
【题目】如图,一块三角形空地上种草皮绿化,已知AB=20米,AC=30米,∠A=150°,草皮的售价为a元/米2,则购买草皮至少需要( )
A. 450a元 B. 225a元 C. 150a元 D. 300a元
【答案】C
【解析】
过点C作CD⊥BA交BA的延长线于点D,则∠DAC=30°,由AC=30m,求出CD=15m,然后根据三角形的面积公式推出△ABC的面积为150m2,最后根据每平方米的售价即可推出结果.
如图,过点C作CD⊥BA交BA的延长线于点D,
∵∠BAC=150°,
∴∠DAC=30°,
∵CD⊥BD,AC=30m,
∴CD=15m,
∵AB=20m,
∴S△ABC=AB×CD=×20×15=150m2,
∵草皮的售价为a元/米2,
∴购买这种草皮的价格:150a元.
故选C.
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .
【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.