题目内容

精英家教网如图,已知P、Q是△ABC的边BC上的两点,且 BP=QC=PQ=AP=AQ,则∠BAC=
 
分析:先根据BP=QC=PQ=AP=AQ求证△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,再根据三角形外角的性质求出∠QAC和∠BAP的度数即可.
解答:解:∵BP=QC=PQ=AP=AQ,
∴△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,
∴∠PAQ=∠APQ=∠AQP=60°,
在△ABP和△CAQ中
AP=AQ
∠APB=∠AQC=120°
BP=CQ

∴△ABP≌△ACQ,
∴∠QAC=∠B=
1
2
∠APQ=30°,
同理:∠BAP=30°,
∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.
故答案为:120°
点评:此题主要考查学生对等腰三角形的判定与性质和三角形外角的性质的理解和掌握,此题的关键是判定出△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,然后利用外角的性质即可求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网