题目内容

【题目】如图,在RtABC中,C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.

(1)求证:AC是O的切线;

(2)若OB=10,CD=8,求BE的长.

【答案】(1)证明见解析;(2)12

【解析】

试题分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到ODA为直径,即可得证;

(2)过O作OG垂直于BE,可得出四边形ODCG为矩形,在直角三角形OBG中,利用勾股定理求出BG的长,由垂径定理可得BE=2BG.

试题解析:(1)证明:连接OD,BD为ABC平分线,∴∠1=2,OB=OD,∴∠1=3,∴∠2=3,ODBC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;

(2)过O作OGBC,连接OE,四边形ODCG为矩形,GC=OD=OB=10,OG=CD=8,在RtOBG中,利用勾股定理得:BG=6,OGBE,OB=OE,BE=2BG=12.

解得:BE=12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网