题目内容

【题目】如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.
(1)求证:BE2=EGEA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.

【答案】
(1)证明:(1)∵四边形ABCD是矩形,

∴∠ABC=90°,

∵AE⊥BD,

∴∠ABC=∠BGE=90°,

∵∠BEG=∠AEB,

∴△ABE∽△BGE,

∴BE2=EGEA;


(2)解:由(1)证得BE2=EGEA,

∵BE=CE,

∴CE2=EGEA,

=

∵∠CEG=∠AEC,

∴△CEG∽△AEC,

∴∠ECG=∠EAC.


【解析】(1)由四边形ABCD是矩形,得到∠ABC=90°,得到∠ABC=∠BGE=90°,根据相似三角形的性质即可得到结论;(2)由(1)证得BE2=EGEA,推出△CEG∽△AEC,根据相似三角形的性质即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网