题目内容
【题目】抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
【答案】(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
【解析】
(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
解:(1)∵抛物线y=x2+bx+c经过点A、C,
把点A(﹣1,0),C(0,﹣3)代入,得:,
解得,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图,作CH⊥EF于H,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的顶点坐标E(1,﹣4),
设N的坐标为(1,n),﹣4≤n≤0
∵∠MNC=90°,
∴∠CNH+∠MNF=90°,
又∵∠CNH+∠NCH=90°,
∴∠NCH=∠MNF,
又∵∠NHC=∠MFN=90°,
∴Rt△NCH∽△MNF,
∴,即
解得:m=n2+3n+1=,
∴当时,m最小值为;
当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.
∴m的取值范围是.
(3)设点P(x1,y1),Q(x2,y2),
∵过点P作x轴平行线交抛物线于点H,
∴H(﹣x1,y1),
∵y=kx+2,y=x2,
消去y得,x2﹣kx﹣2=0,
x1+x2=k,x1x2=﹣2,
设直线HQ表达式为y=ax+t,
将点Q(x2,y2),H(﹣x1,y1)代入,得,
∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
∴a=x2﹣x1,
∵=( x2﹣x1)x2+t,
∴t=﹣2,
∴直线HQ表达式为y=( x2﹣x1)x﹣2,
∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).
【题目】2020年东京奥运会的比赛门票开始接受公众预订.下表为奥运会官方票务网站公布的几种球类比赛的门票的人民币价格,球迷小李用12000元做为预订下表中比赛项目门票的资金.
比赛项目 | 票价(元/场) |
男篮 | 1000 |
足球 | 800 |
乒乓球 | 500 |
(1)若全部资金用来预订男篮门票和乒乓球门票共15张,问男篮门票和乒乓球门票各订多少张?
(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?