题目内容
【题目】如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°,
∴2∠BCP+2∠BCA=180°。
∴∠BCP+∠BCA=90°,即∠PCA=90°。
又∵AC是⊙O的直径,∴直线CP是⊙O的切线。
(2)如图,作BD⊥AC于点D,
∵PC⊥AC,∴BD∥PC。∴∠PCB=∠DBC。
∵C=2,sin∠BCP=
∴,解得:DC=2。
∴由勾股定理得:BD=4。∴点B到AC的距离为4。
(3)如图,连接AN,
在Rt△ACN中,,
又CD=2,∴AD=AC﹣CD=5﹣2=3。
∵BD∥CP,∴△ABD∽△ACP。
∴,即。∴。
在Rt△ACP中,。
∴△ACP的周长为。
(1))根据∠ABC=∠AC且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP是⊙O的切线。
(2)作BD⊥AC于点D,得到BD∥PC,从而利用求得DC=2,再根据勾股定理求得点B到AC的距离为4。
(3)先求出AC的长度,然后由BD∥PC求得△ABD∽△ACP,利用比例线段关系求得CP的长度,再由勾股定理求出AP的长度,从而求得△ACP的周长
练习册系列答案
相关题目