题目内容
【题目】如图,已知等边△ABC,以AB为直径的圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)若AB=12,求FG的长;
(3)在(2)问条件下,求点D到FG的距离.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)连接OD,证明OD∥AC,易得OD⊥DF;
(2)先求出CD的长,再利用△CDF是30°的直角三角形可求出CF的长,同理可利用△FGA中∠A的三角函数可求得FG的长;
(3)过D作DH⊥AB于H,利用△BDH是30°的直角三角形可求出BH的长,同理可求得AG,然后根据GH=AB-AG-BH求得即可.
(1)证明:连结OD,如图1,
∵△ABC为等边三角形,
∴∠C=∠A=∠B=60°.
而OD=OB,
∴△ODB是等边三角形,∠ODB=60°,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:∵OD∥AC,点O为AB的中点,
∴OD为△ABC的中位线.
∴BD=CD=6.
在Rt△CDF中,∠C=60°,
∴∠CDF=30°,
∴CF=CD=3.
∴AF=AC﹣CF=12﹣3=9,
在Rt△AFG中,∵∠A=60°,
∴FG=AF×sinA=9×=.
(3)解:如图2,过D作DH⊥AB于H.
∵FG⊥AB,DH⊥AB,
∴FG∥DH,
在Rt△BDH中,∠B=60°,
∴∠BDH=30°,
∴BH=BD=3,
在Rt△AFG中,∵∠AFG=30°,
∴AG=AF=,
∵GH=AB﹣AG﹣BH=12﹣﹣3=,
∴点D到FG的距离是.
练习册系列答案
相关题目