题目内容

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BCx轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)抛物线的对称轴x=-
-5a
2a
=
5
2
;(2分)

(2)由抛物线y=ax2-5ax+4可知C(0,4),对称轴x=-
-5a
2a
=
5
2

∴BC=5,B(5,4),又AC=BC=5,OC=4,
在Rt△AOC中,由勾股定理,得AO=3,
∴A(-3,0)B(5,4)C(0,4)(5分)
把点A坐标代入y=ax2-5ax+4中,
解得a=-
1
6
,(6)
∴y=-
1
6
x2+
5
6
x+4.(7分)

(3)存在符合条件的点P共有3个.以下分三类情形探索.
设抛物线对称轴与x轴交于N,与CB交于M.
过点B作BQ⊥x轴于Q,
易得BQ=4,AQ=8,AN=5.5,BM=
5
2

①以AB为腰且顶角为角A的△PAB有1个:△P1AB.
∴AB2=AQ2+BQ2=82+42=80(8分)
在Rt△ANP1中,P1N=
AP12-AN2
=
AB2-AN2
=
80-(5.5)2
=
199
2

∴P1
5
2
,-
199
2
).(9分)
②以AB为腰且顶角为角B的△PAB有1个:△P2AB.
在Rt△BMP2中MP2=
B
P22
-BM2
=
AB2-BM2

=
80-
25
4

=
295
2
,(10分)
∴P2=(
5
2
8-
295
2
).(11分)
③以AB为底,顶角为角P的△PAB有1个,即△P3AB.
画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.
过点P3作P3K垂直y轴,垂足为K,
∵∠CJF=∠AOF,∠CFJ=∠AFO,
∴∠P3CK=∠BAQ,∠CKP3=∠AQB,
∴RtP3CKRtBAQ.
P3K
CK
=
BQ
AQ
=
1
2

∵P3K=2.5
∴CK=5于是OK=1,(13分)
∴P3(2.5,-1).(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网