搜索
题目内容
已知抛物线y=ax
2
+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.
试题答案
相关练习册答案
∵抛物线y=ax
2
+bx+c经过(-1,10),(1,4),(2,7)三点,
∴
a-b+c=10
a+b+c=4
4a+2b+c=7
,
解得:
a=2
b=-3
c=5
,
则二次函数的解析式为y=2x
2
-3x+5.
练习册系列答案
经纶学典小升初衔接教材系列答案
金钥匙冲刺卷系列答案
全能金卷小学毕业升学全程模拟试卷系列答案
北斗星名校期末密卷系列答案
生本精练册系列答案
初中毕业升学指导系列答案
考必胜全国小学毕业升学考试试卷精选系列答案
书立方期末大考卷系列答案
中招试题详解暨中招复习指导系列答案
小学升学多轮夯基总复习系列答案
相关题目
已知:m是非负数,抛物线y=x
2
-2(m+1)x-(m+3)的顶点Q在直线y=-2x-2上,且和x轴交于点A、B(点A在点B的左侧).
(1)求A、B、Q三点的坐标.
(2)如果点P的坐标为(1,1).求证:PA和直线y=-2x-2垂直.
(3)点M(x,1)在抛物线上,判断∠AMB和∠BAQ的大小关系,并说明理由.
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与
y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=
-
6
3
7
x
2
+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.
一座拱型桥,桥下的水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF为多少?
(1)若把它看作抛物线的一部分,在坐标系中(如图①),可设抛物线的表达式为y=ax
2
+c.请你填空:a=______,c=______,EF=______米;
(2)若把它看作圆的一部分,可构造图形(如图②)请你计算:
(3)请你估计(2)中EF与(1)中的EF的差的近似值(误差小于0.1米).
如图1,Rt△ABC中,斜边AB在x轴上,点C在y轴上,且OC=2,OA:OB=1:4,抛物线y=ax
2
+bx+c经过A、B、C三点.
(1)求此抛物线的解析式;
(2)若直线y=x+b与Rt△ABC相交,所截得的三角形面积是原Rt△ABC面积的
3
10
,求b的值;
(3)将△OAC绕原点O逆时针旋转90°后得到△OEF,如图2,再将△OEF绕平面内某点旋转180°后得△MNQ(点M、N、Q分别与点E、F、O对应),使点M,N在抛物线上,求点M,N的坐标.
如图,已知抛物线y=ax
2
+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.
(1)求抛物线解析式;
(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式.
如图,已知抛物线y=ax
2
+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转
点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?
如图,抛物线y=ax
2
-5ax+4经过△ABC的三个顶点,已知BC
∥
x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总