题目内容
【题目】如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED= ;③当0≤x≤5时,y=;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=.其中正确的有( )
A.2个B.3个C.4个D.5个
【答案】B
【解析】
根据图中相关信息即可判断出正确答案.
解:图2知:当 时y恒为10,
∴当 时,点Q运动恰好到点B停止,且当 时点P必在EC上,
故①正确;
∵当 时点P必在EC上,且当 时,y逐渐减小,
∴当 时,点Q在点B处,点P在点C处,此时
设 则
在 中,由勾股定理得:
解得:
故②正确;
当 时,由 知点P在AE上,过点P作 如图:
故③正确;
当 时,
不是等腰三角形,故④不正确;
当时,点P在BC上,点Q和点B重合,
故⑤ 不正确;
故选B.
【题目】已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥,且当x=1或x=4时,y的值均为.
请对该函数及其图象进行如下探究:
(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: .
(2)函数图象探究:
①根据解析式,补全下表:
x | 1 | 2 | 3 | 4 | 6 | 8 | … | |||
y | … |
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.
(3)结合画出的函数图象,解决问题:
①当x=,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为: ;(用“<”或“=”表示)
②若直线y=k与该函数图象有两个交点,则k的取值范围是 ,此时,x的取值范围是 .