题目内容
【题目】如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.
(1)求证:∠C=90°;
(2)当BC=3,sinA=时,求AF的长.
【答案】(1)见解析(2)
【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出
r的值.
(1)连接OE,BE,
∵DE=EF,
∴=
∴∠OBE=∠DBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠DBE,
∴OE∥BC
∵⊙O与边AC相切于点E,
∴OE⊥AC
∴BC⊥AC
∴∠C=90°
(2)在△ABC,∠C=90°,BC=3,sinA=,
∴AB=5,
设⊙O的半径为r,则AO=5﹣r,
在Rt△AOE中,sinA=
∴
∴
练习册系列答案
相关题目