题目内容

精英家教网如图,PA切⊙O于A,PO交⊙O于B,若PA=6,PB=4,则⊙O的半径是(  )
A、
5
6
B、2
C、
5
2
D、5
分析:由切线的性质知∠OAP=90°,在Rt△OAP中,已知了PA的长,设圆的半径为r,可用勾股定理求出r的长.
解答:解:∵PA切⊙O于A,∴∠OAP=90°,
设圆的半径为r,在Rt△OAP中,则AO2+PA2=PO2
∵PA=6,PB=4,
∴r2+62=(4+r)2
解得r=2.5,
故选C.
点评:本题考查了切线的性质,运用切线的性质来进行计算或论证时,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决相关问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网