题目内容

【题目】如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.

(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;
(2)猜想∠EOF与∠AOB的数量关系;
(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?

【答案】
(1)解:∵∠AOC=∠AOB+∠BOC,
∴∠AOC=90°+60°=150°.
∵OE平分∠AOC,
∴∠EOC=150°÷2=75°.
∵OF平分∠BOC,
∴∠COF=60°÷2=30°.
∵∠EOC=∠EOF+∠COF,
∴∠EOF=75°-30°=45°
(2)解:∵OE平分∠AOC,OF平分∠BOC.
∴∠COE= ∠AOC,∠COF= ∠BOC
∵∠AOB=∠AOC-∠BOC
∴∠EOF=∠COE-∠COF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB
(3)解:∵OE平分∠AOC,OF平分∠BOC,
∴∠COE= ∠AOC,∠COF= ∠BOC,
∴∠EOF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB.又∵∠AOB+∠EOF=156°,
∴∠EOF=52°
【解析】(1)首先求出∠AOC的度数,再根据角平分线的性质计算出∠EOC,∠BOF的度数,然后根据角的和差关系即可算出∠EOF的度数;
(2)根据角平分线的定义得出∠COE= ∠AOC,∠COF= ∠BOC ,又因∠AOB=∠AOC-∠BOC ,从而得出∠EOF=∠COE-∠COF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB ;
(3)根据角平分线的定义得出∠COE= ∠AOC,∠COF= ∠BOC ,根据角的和差得出∠EOF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB.又∠AOB+∠EOF=156°,从而得出∠EOF=52° 。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网