题目内容
【题目】如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;
(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.
【答案】(1);(2)P(1,0);(3).
【解析】(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:
,解得:,故抛物线的解析式:.
(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);
(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:
=,==,=10;
①若MA=MC,则,得:=,解得:m=﹣1;
②若MA=AC,则,得:=10,得:m=;
③若MC=AC,则,得:=10,得:,;
当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,﹣1)(1,0).
练习册系列答案
相关题目