题目内容

【题目】如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;

(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.

【答案】(1);(2)P(1,0);(3)

【解析】(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:

,解得:故抛物线的解析式:

(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);

(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:

====10;

①若MA=MC,则,得:=,解得:m=﹣1

②若MA=AC,则,得:=10,得:m=

③若MC=AC,则,得:=10,得:

当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;

综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,﹣1)(1,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网