题目内容

【题目】一只小虫子落在数轴上的某点,第一次从向左跳一个单位到,第二次从向右跳个单位到,第三次从向左跳个单位到,第四次从向右跳个单位到,按以上规律跳了次时,它落在数轴上的点所表示的数恰好是2019,则这只小虫的初始位置所在的数是_____

【答案】1969

【解析】

根据数轴上的点的移动规律:左减右加可分别用P0表示出P1P2P3……,根据规律可表示出P100,由点所表示的数恰好是2019即可求出P0表示的数,可得答案.

P1=P0-1

P2=P1+2=P0-1+2

P3=P2-3=P0-1+2-3

……

P100=P0-1+2-3+4-……-99+100=P0+50

∵点所表示的数恰好是2019

P0=2019-50=1969

∴这只小虫的初始位置所在的数是1969

故答案为:1969

练习册系列答案
相关题目

【题目】(本小题满分10分)

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4

5

6


1

0

1

1

探究二:

7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)

其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网