题目内容
【题目】如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C、D的坐标及四边形ABDC的面积;
(2)若点Q在线的CD上移动(不包括C,D两点).QO与线段AB,CD所成的角∠1与∠2如图所示,给出下列两个结论:①∠1+∠2的值不变;②的值不变,其中只有一个结论是正确的,请你找出这个结论,并求出这个值.
(3)在y轴正半轴上是否存在点P,使得S△CDP=S△PBO?如果有,试求出点P的坐标.
【答案】(1)C(0,2)、D(5,2);S四边形ABDC=10;(2)∠1+∠2=180°;证明见解析;(3)存在,点P的坐标为(0,)或(0,5).
【解析】
(1)依据平移与坐标变化的规律可求的点C、D的坐标,由点的坐标可求得AB、OC的长,从而可求得四边形ABDC的面积;
(2)依据平行的性质可证明∠1+∠2=180°;
(3)设点P的坐标(0,a),然后依据三角形的面积公式列方程求解即可.
(1)OA=2,OB=3,
∴A(﹣2,0)、B(3,0).
∵将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,
∴C(0,2)、D(5,2).
∵由平移的性质可知:AB∥CD,AB=CD,
∴ABCD为平行四边形.
∴四边形ABDC的面积=ABOC=5×2=10.
(2)∠1+∠2=180°.
证明:如图1所示;
∵AB∥CD,
∴∠1=∠3.
∵∠3+∠2=180°.
∴∠1+∠2=180°.
∴∠1+∠2为定值.
∵∠1+∠2=180°,
∴∠2=180°﹣∠1.
∴==﹣1.
∵当点Q在CD上运动时,∠1的度数在不断变化,
∴﹣1在不断变化,即的值在不断变化;
(3)如图2所示:设点P的坐标为(0,a),则PC=(2﹣a),PO=a.
∵S△CDP=S△PBO,
∴DCPC=OBOP.
∴×5(2﹣a)=×3×a.
∴10﹣5a=3a
解得:a=
如图3所示:设点P的坐标为(0,a),则PC=a﹣2,PO=a.
∵S△CDP=S△PBO,
∴DCPC=OBOP.
∴×5×(a﹣2)=×3×a.
∴5a﹣10=3a.
解得:a=5.
综上所述,点P的坐标为(0,)或(0,5).