题目内容

如图,已知梯形ABCD中,ADBC,AB=DC,将△ABE沿AE折叠刚好与△ADE重合.
(1)求证:四边形ABED是平行四边形;
(2)写出关于这个图形的另外一条正确结论.
(1)证明:∵梯形ABCD中,将△ABE沿AE折叠刚好与△ADE重合,
∴∠BAE=∠DAE,AB=AD,
∵ADBC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=AD,
又BEAD,
∴四边形ABED是平行四边形;

(2)△DEC是等腰三角形,
证明:∵四边形ABED是平行四边形,
∴AB=DE,
∵AB=CD,
∴DC=DE,
故△DEC是等腰三角形,(答案不唯一).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网