题目内容
【题目】如图所示,在平面直角坐标系中,直线OM是正比例函数的图象,点A的坐标为(1,0),在直线OM上找一点N,使△ONA是等腰三角形,则符合条件的点N有( )
A. 2个 B. 3个 C. 4个 D. 5个
【答案】A
【解析】∵直线OM是正比例函数y=- x的图象,∴图形经过(1,- ),
∴tan∠AON 2 = ,∴∠AON 2 =60°,
若AO作为腰时,有两种情况,
当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,
当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;
此时2个点重合,
若OA是底边时,N是OA的中垂线与直线MO的交点有1个.
以上4个交点有2个点重合.故符合条件的点有2个.
故选A.
练习册系列答案
相关题目