题目内容
【题目】已知:如图,C、D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)求证:CE∥DF;
(2)若∠DCE=126°,求∠DEF的度数.
【答案】(1)见解析;(2)27°
【解析】
(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;
(2)由平行线的性质,可得∠CDF=54°,又∵DE平分∠CDF,则∠CDE=∠CDF=27°,根据平行线的性质,即可得到∠DEF的度数.
(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,
∴∠1+∠DCE=180°,
∴∠2=∠DCE,
∴CE∥DF;
(2)解:∵CE∥DF,∠DCE=126°,
∴∠CDF=180°﹣∠DCE=180°﹣126°=54°,
∵DE平分∠CDF,
∴∠CDE=∠CDF=27°,
∵EF∥AB,
∴∠DEF=∠CDE=27°.
练习册系列答案
相关题目