题目内容

【题目】为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.

(1)求乙、丙两种树每棵各多少元?

(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?

(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?

【答案】(1)乙种树每棵200元,丙种树每棵300元(2)甲种树600棵,乙种树300棵,丙种树100棵(3)201棵

【解析】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,

乙种树每棵200元,丙种树每棵×200=300(元)。

(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.

根据题意:200·2x+200x+300(1000-3x)=210000,

解得x=30。

2x=600,1000-3x=100,

答:能购买甲种树600棵,乙种树300棵,丙种树100棵。

(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,

根据题意得:200(1000-y)+300y≤210000+10120,

解得:y≤201.2。

y为正整数,y最大为201。

答:丙种树最多可以购买201棵。

(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数。

(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可。

(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网