题目内容
【题目】如图,在△ABC与△DBC中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB,AB=DE.
(1)求证:BC=DB;
(2)若BD=8cm,求AC的长.
【答案】(1)见解析; (2)4
【解析】
(1)由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC;
(2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到AC=BE,由E是BC的中点,得到BE=.
(1)∵DE⊥AB,可得∠BFE=90°,
∴∠ABC+∠DEB=90°,
∵∠ACB=90°,
∴∠ABC+∠A=90°,
∴∠A=∠DEB,
在△ABC和△EDB中, ,
∴△ABC≌△EDB(AAS),
∴BD=BC;
(2)∵△ABC≌△EDB,
∴AC=BE,
∵E是BC的中点,BD=8cm,
∴BE=cm.
练习册系列答案
相关题目