题目内容
【题目】如图1,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.
(1)当AM=时,求x的值;
(2)如图2,连接BM、过B点作BH⊥MN,垂足为H,求证:BM是∠ABH的角平分线;
(3)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(4)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.
【答案】(1)x=.(2)证明见解析;(3)不变,△DMP的周长为2;(4)S=(2x-),面积的最小值为.
【解析】
(1)利用勾股定理构建方程,即可解决问题;
(2)通过证明△BAM≌△BHM进而可得∠ABM=∠MBH,即可得证;
(3)设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得出x、y的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长;
(4)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交EF于O,交FH于K.根据梯形的面积公式构建二次函数,利用二次函数的性质解决最值问题即可;
解:(1)如图,在Rt△AEM中,AE=1﹣x,EM=BE=x,AM=,
∵AE2+AM2=EM2,
∴(1﹣x)2+()2=x2,
∴x=.
(2)∵EB=EM,
∴∠EBM=∠EMB.
∵∠EBC=∠EMN,
∴∠MBC=∠BMN.
∵AD∥BC,
∴∠MBC=∠AMB,
∴∠AMB=∠BMN,
又∵∠A=∠MHB,BM=BM,
∴△BAM≌△BHM.
∴∠ABM=∠MBH,
∴BM是∠ABH的角平分线;
(3)△DMP的周长不变,为2.
理由:设AM=y,则BE=EM=x,MD=1﹣y,
在Rt△AEM中,由勾股定理得AE2+AM2=EM2,
∴(1﹣x)2+y2=x2,
解得1+y2=2x,
∴1﹣y2=2(1﹣x)
∵∠EMP=90°,∠A=∠D,
∴Rt△AEM∽Rt△DMP,
∴=,
即=,
解得DM
∴△DMP的周长不变,为2.
(4)作FH⊥AB于H.连接BM交EF于O,交FH于K.
则四边形BCFH是矩形.
在Rt△AEM中,AM==,
∵B、M关于EF对称,
∴BM⊥EF,
∴∠KOF=∠KHB,
∵∠OKF=∠BKH,
∴∠KFO=∠KBH,
∵AB=BC=FH,∠A=∠FHE=90°,
∴△ABM≌△HFE,
∴EH=AM=,
∴CF=BH=x﹣,
∴S=(BE+CF)BC
=(x+x﹣)
=(2x﹣)
= [()2﹣+1]
=(﹣)2+.
∴S=(2x﹣),
当=时,S有最小值=.