题目内容
【题目】在中, ,点是直线上一点(不与重合),以为一边在 的右侧作,使,连接.
(1)如图1,当点在线段上,如果,则 度;
(2)设, .
①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由;
②当点在直线上移动,则之间有怎样的数量关系?请画出图形并直接写出相应的结论.
【答案】(1)90; (2) ①.②
【解析】试题分析:(1)利用等腰三角形证明ABDACE,所以∠ECA=∠DBA,所以∠DCE=90°.(2)方法类似(1)证明△ABD≌△ACE,所以∠B=∠ACE,再利用角的关系求. (3)同理方法类似(1).
试题解析:
解:(1) 90 度.
∠DAE=∠BAC ,所以∠BAD=∠EAC,AB=AC,AD=AE,所以ABDACE,所以∠ECA=∠DBA,所以∠ECA=90°.
(2)①.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△ABD≌△ACE,
∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,
∴.∵,
∴.
(3)图形正确可知 .
练习册系列答案
相关题目