题目内容

【题目】如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.

(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;
(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.

【答案】
(1)

解:存在;当点M为AC的中点时,AM=BM,则△ABM为等腰三角形;

当点M与点C重合时,AB=BM,则△ABM为等腰三角形;

当点M在AC上,且AM=2时,AM=AB,则△ABM为等腰三角形;

当点M在AC上,且AM=BM时,AM= AC= ×2 = 时,则△ABM为等腰三角形;

当点M为CG的中点时,AM=BM,则△ABM为等腰三角形;


(2)

证明:在AB上截取AK=AN,连接KN;如图1所示:

∵四边形ABCD是正方形,

∴∠ADC=90°,AB=AD,

∴∠CDG=90°,

∵BK=AB﹣AK,ND=AD﹣AN,

∴BK=DN,

∵DH平分∠CDG,

∴∠CDH=45°,

∴∠NDH=90°+45°=135°,

∴∠BKN=180°﹣∠AKN=135°,

∴∠BKN=∠NDH,

在Rt△ABN中,∠ABN+∠ANB=90°,

又∵BN⊥NH,

即∠BNH=90°,

∴∠ANB+∠DNH=180°﹣∠BNH=90°,

∴∠ABN=∠DNH,

在△BNK和△NHD中,

∴△BNK≌△NHD(ASA),

∴BN=NH;


(3)

解:①当M在AC上时,即0<t≤2 时,△AMF为等腰直角三角形,

∵AM=t,

∴AF=FM= t,

∴S= AFFM= × t= t2

当t=2 时,S的最大值= ×(2 2=2;

②当M在CG上时,即2 <t<4 时,如图2所示:

CM=t﹣AC=t﹣2 ,MG=4 ﹣t,

在△ACD和△GCD中,

∴△ACD≌△GCD(SAS),

∴∠ACD=∠GCD=45°,

∴∠ACM=∠ACD+∠GCD=90°,

∴∠G=90°﹣∠GCD=45°,

∴△MFG为等腰直角三角形,

∴FG=MGcos45°=(4 ﹣t) =4﹣ t,

∴S=SACG﹣SCMJ﹣SFMG= ×4×2﹣ ×CM×CM﹣ ×FG×FG

=4﹣ (t﹣2 2 (4﹣ 2=﹣ +4 t﹣8

=﹣ (t﹣ 2+

∴当t= 时,S的最大值为


【解析】(1)四种情况:当点M为AC的中点时,AM=BM;当点M与点C重合时,AB=BM;当点M在AC上,且AM=2时,AM=AB;当点M在AC上,且AM=BM时,AM= 时;当点M为CG的中点时,AM=BM;△ABM为等腰三角形;(2)在AB上截取AK=AN,连接KN;由正方形的性质得出∠ADC=90°,AB=AD,∠CDG=90°,得出BK=DN,先证出∠BKN=∠NDH,再证出∠ABN=∠DNH,由ASA证明△BNK≌△NHD,得出BN=NH即可;(3)①当M在AC上时,即0<t≤2 时,△AMF为等腰直角三角形,得出AF=FM= t,求出S= AFFM= t2;当t=2 时,即可求出S的最大值;
②当M在CG上时,即2 <t<4 时,先证明△ACD≌△GD,得出∠ACD=∠GCD=45°,求出∠ACM=90°,证出△MFG为等腰直角三角形,得出FG=MGcos45°=4﹣ t,得出S=SACG﹣SCMJ﹣SFMG , S为t的二次函数,即可求出结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网