题目内容
【题目】如图,AB是⊙O的直径,C是 的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径.
【答案】
(1)证明:延长CE交⊙O于点P,
∵CE⊥AB,
∴ = ,
∴∠BCP=∠BDC,
∵C是 的中点,
∴CD=CB,
∴∠BDC=∠CBD,
∴∠CBD=∠BCP,
∴CF=BF
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD=6,AC=8,
∴BC=6,
在Rt△ABC中,AB= =10,
∴⊙O的半径为5.
【解析】(1)首先延长CE交⊙O于点P,由垂径定理可证得∠BCP=∠BDC,又由C是 的中点,易证得∠BDC=∠CBD,继而可证得CF=BF;(2)由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ACB=90°,然后由勾股定理求得AB的长,继而求得答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目