题目内容

如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;②△ABE≌△ACD;③BE2+DC2=DE2;④
BE+BF+EF
AB
=
2

其中正确的是(  )
A.①②④B.①③④C.①②③D.②③④BC

∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,
在△AED和△AEF中,
AD=AF
∠DAE=∠FAE
AE=AE

∴△AED≌△AEF(SAS),
∴ED=FE
在Rt△ABC中,∠ABC+∠ACB=90°,
又∵∠ACB=∠ABF,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴在Rt△FBE中BE2+BF2=FE2
由△ADC≌△AFB和△AED≌△AEF得出DC=BE,EF=ED,DC=BF,
∴BE+BF+EF=BE+DC+DE=BC=
2
AB,
即④成立.
故正确的有①③④,②不一定正确.
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网