题目内容
【题目】如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是( )
A.0个B.1个C.2个D.3个
【答案】D
【解析】
利用等腰三角形的定义得到△ABC为等腰三角形,再根据等腰三角形的性质和三角形内角和计算出∠ABC=∠C=72°,接着根据角平分线的定义得到∠ABD=∠CBD=36°,然后判断△ABD和△BDC为等腰三角形.
解:∵AB=AC,
∴△ABC为等腰三角形,
∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=×72°=36°,
∴∠ABD=∠A,
∴△ABD为等腰三角形,
∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴△BDC为等腰三角形.
故选:D.
练习册系列答案
相关题目
【题目】为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,
学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统
计并制作了如下的频数分布表和扇形统计图:
组别 | 做家务的时间 | 频数 | 频率 |
A | 1≤t<2 | 3 | 0.06 |
B | 2≤t<4 | 20 | 0.40 |
C | 4≤t<6 | a | 0.30 |
D | 6≤t<8 | 8 | b |
E | t≥8 | 4 | 0.08 |
根据上述信息回答下列问题:
(1)a= ,b= .
(2)在扇形统计图中,B组所占圆心角的度数为 .
(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?