题目内容
【题目】如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC= .
【答案】或
【解析】解:过点D、B分别作DE⊥AC,BH⊥AC,垂足分别为E、H,设AC=x.
在Rt△CDE中,DC=3,∠DCE=30°,
∴,.
∴DE=,CE=.
则AE=x﹣,
在Rt△AED中,由勾股定理得:AD2=AE2+DE2=,
∵AB=BC,BH⊥AC,
∴AH=AC=x,
∵tan∠BAC=,
∴BH=AH=x
在Rt△ABH中,由勾股定理得:AB2=BH2+AH2 ,
∴.
∵AB=AD,
∴
解得:x1=6,x2=.
∴AC=6或.
过点D、B分别作DE⊥AC,BH⊥AC,垂足分别为E、H,设AC=x,先求得AE(用含x的式子表示)和DE的长,根据勾股定理可表示出AD2 , 然后根据等腰三角形三线合一的性质可知:AH=x,然后根据锐角三角函数的定义可求得HB(用含x的式子表示)的长,根据勾股定理可表示出AB2 , 然后根据AB=AD,列方程求解即可.
练习册系列答案
相关题目
【题目】某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:
编号 | 成绩 | 等级 | 编号 | 成绩 | 等级 |
① | 95 | A | ⑥ | 76 | B |
② | 78 | B | ⑦ | 85 | A |
③ | 72 | C | ⑧ | 82 | B |
④ | 79 | B | ⑨ | 77 | B |
⑤ | 92 | A | ⑩ | 69 | C |
(1)孔明同学这次测试的成绩是87分,则他的成绩等级是 等;
(2)请将条形统计图补充完整;
(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少人.