题目内容

【题目】如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

(1)求证:△AEH≌△CGF
(2)求证:四边形EFGH是菱形.

【答案】
(1)

证明:如图,∵四边形ABCD是平行四边形,

∴∠A=∠C,

在△AEH与△CGF中,

∴△AEH≌△CGF(SAS)


(2)

证明:∵四边形ABCD是平行四边形,

∴AB=CD,AD=BC,∠B=∠D.

又∵AE=CG,AH=CF,

∴BE=DG,BF=DH,

在△BEF与△DGH中,

∴△BEF≌△DGH(SAS),

∴EF=GH.

又由(1)知,△AEH≌△CGF,

∴EH=GF,

∴四边形EFGH是平行四边形,

∴HG∥EF,

∴∠HGE=∠FEG,

∵EG平分∠HEF,

∴∠HEG=∠FEG,

∴∠HEG=∠HGE,

∴HE=HG,

∴四边形EFGH是菱形.


【解析】(1)由全等三角形的判定定理SAS证得结论;
(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.
此题考查了平行四边形的判定;与性质,菱形的判定与性质以及全等三角形的判定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网