题目内容
【题目】抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
(1)如图1,若A(-1,0),B(3,0),
① 求抛物线的解析式;
② P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;
(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.
【答案】(1)①y=-x2+2x+3②(2)-1
【解析】(1)①把A、B的坐标代入解析式,解方程组即可得到结论;
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,
,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;
(2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,
即,整理得.令y=0,得:.
故,从而得到.由,得到,解方程即可得到结论.
(1)①把A(-1,0),B(3,0)代入得:
,解得:,
∴
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.
∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,
∴,AI=,
∴CI=,∴.
设EN=3x,则CN=4x.
∵tan∠CDO=tan∠EDN,
∴,∴DN=x,∴CD=CN-DN=3x=,
∴,∴DE= ,E(,0).
CE的直线解析式为:,
,解得:.
点P的横坐标 .
(2)作DI⊥x轴,垂足为I.
∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
∴,
∴.
令y=0,得:.
∴,∴.
∵,
∴,
解得:yD=0或-1.
∵D为x轴下方一点,
∴,
∴D的纵坐标-1 .
【题目】某超市对,两种商品开展春节促销活动,活动方案有如下两种:
商品 | |||
标价(单位:元) | 120 | 150 | |
方案一 | 每件商品出售价格 | 按标价打7折 | 按标价打折 |
方案二 | 若所购商品超过10件(不同商品可累计)时,每件商品均按标价打8折后出售. |
(同一种商品不可同时参与两种活动)
(1)某单位购买商品5件,商品4件,共花费960元,求的值;
(2)在(1)的条件下,若某单位购买商品件(为正整数),购买商品的件数比商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.