题目内容
【题目】某超市销售每台进价分别为200元、150元的甲、乙两种型号的电器,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
甲种型号 | 乙种型号 | ||
第一周 | 3台 | 5台 | 1900元 |
第二周 | 4台 | 10台 | 3200元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
⑴求A、B两种型号的电风扇的销售单价;
⑵若超市准备用不多于5000元的金额再采购这两种型号的电风扇共30台,且按(1)中的销售单价全部售完利润不少于1850元,则有几种购货方案?
⑶在⑵的条件下,超市销售完这30台电风扇哪种方案利润最大?最大利润是多少?请说明理由.
【答案】(1)A每台300元,B每台200元;(2)四种方案:A 为7、8、9、10台时,B 分别为23、22、21、20台;(3)当A 10台,B20台时,最大利润是2000元.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1900元,4台A型号10台B型号的电扇收入3200元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多于5000元,使利润不少于1850元,列不等式组求解.
(3)根据题意列出一次函数,根据一次函数的性质可解得.
解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:
解得:
答:A、B两种型号电风扇的销售单价分别为300元、200元;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台.
依题意得:
解得:7≤a≤10.
∵a是正整数,
∴a=7或8、9、10,
30-a=23或22、21、20.
∴共有4种方案:①采购A型23台,B型7台;②采购A型22台,B型8台;③采购A型21台,B型9台;④采购A型20台,B型10台。
(3)设利润为w元
w=(300-200)a+(200-150)(30-a)
=50a+1500
∵50>0,
∴w随a的增大而增大,
∴a=10时,w最大为w=50a+1500=2000元
即当销售A型 10台,B型20台时,利润最大,最大利润是2000元.
【题目】已知某品牌的饮料有大瓶与小瓶装之分.某超市花了2100元购进一批该品牌的饮料共800瓶,其中,大瓶和小瓶饮料的进价及售价如右表所示.
大瓶 | 小瓶 | |
进价(元/瓶) | ||
售价(元/瓶) |
(1)问:该超市购进大瓶和小瓶饮料各多少瓶?
(2)当大瓶饮料售出了200瓶,小瓶饮料售出了100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.请问:超市要使这批饮料售完后获得的利润为1075元,那么小瓶饮料作为赠品送出多少瓶?
【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 1140 |
第二次购物 | 3 | 7 | 1110 |
第三次购物 | 9 | 8 | 1062 |
(1)小林以折扣价购买商品A、B是第 次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?