题目内容
【题目】解方程:
(1)x2﹣11x﹣12=0(因式分解法)
(2)x2+4x﹣5=0(配方法)
(3)(x+2)2﹣10(x+2)+25=0(因式分解法)
(4)2x2﹣7x+3=0(公式法)
(5)﹣x2+4x=3(方法自选)
(6)⑥(x﹣2)(2x+1)=1+2x(方法自选)
【答案】(1)x1=12,x2=﹣1;(2)x1=﹣1,x2=﹣3;(3)x1=x2=3;(4)x1=3,x2=;(5)x1=1,x2=3;(6)x1=﹣,x2=3.
【解析】
(1)直角利用因式分解法即可求解;
(2)首先移项,把常数项移到等号的右边,方程两边同时加上一次项系数的一半,则左边是完全平方的形式,右边是常数,再利用直接开平方法即可求解;
(3)把x+2当作一个整体,则方程左边就是一个完全平方式,即可利用因式分解法求解;
(4)首先确定a,b,c的值,再检验方程是否有解,若有解代入公式即可求解.
(5)首先移项,把常数项移到等号的右边,方程两边同时加上一次项系数的一半,则左边是完全平方的形式,右边是常数,即可求解;
(6)首先移项,把常数项移到等号的右边,方程两边同时加上一次项系数的一半,则左边是完全平方的形式,右边是常数,即可求解;
(1)x2﹣11x﹣12=0
解:(x﹣12)(x+1)=0
∴x﹣12=0或x+1=0,
∴x1=12,x2=﹣1;
(2)x2+4x﹣5=0
解:x2+4x=5,
x2+4x+4﹣4=5﹣4,
(x+2)2=1,
∴x+2=±1,
∴x1=﹣1,x2=﹣3;
(3)(x+2)2﹣10(x+2)+25=0
解:[(x+2)﹣5]2=0,
∴(x﹣3)2=0,
∴x﹣3=0,
∴x1=x2=3;
(4)2x2﹣7x+3=0
解:∵△=49﹣24=25>0,
∴x=,
∴x1=3,x2=;
(5)﹣x2+4x=3,
解:x2﹣4x+3=0,
∴(x﹣1)(x﹣3)=0,
∴x﹣1=0或(x﹣3)=0,
∴x1=1,x2=3;
(6)(x﹣2)(2x+1)=1+2x,
解:(2x+1)(x﹣2﹣1)=0,
∴2x+1=0或x﹣3=0,
∴x1=﹣,x2=3.