题目内容
【题目】已知:如图,点N为△ABC的内心,延长AN交BC于点D,交△ABC的外接圆于点E.
(1)求证:EB=EN=EC;
(2)求证:NE2=AEDE.
【答案】证明:(1)连接BN,
∵点N为△ABC的内心,
∴∠1=∠2,∠3=∠4.
∴∠BCE=∠1,
∴EB=EC.
∵∠5与∠2都是弧EC所对的圆周角,
∴∠5=∠2=∠1.
∴∠4+∠5=∠3+∠1.
∵∠NBE=∠4+∠5,∠BNE=∠3+∠1,
∴∠NBE=∠BNE.
∴EB=EN.
∴EB=EN=EC.
(2)由(1)知∠5=∠2=∠1,∠BED=∠AEB,
∴△BED∽△AEB.
∴.
即BE2=AEDE.
∵EB=EN,
∴NE2=AEDE.
【解析】点N为△ABC的内心,易证EB=EC,只需证明EB=EN,或EN=EC,可以通过等角对等边得出;欲证NE2=AEDE,即证BE2=AEDE,可以通过证明△BED∽△AEB得出.
【考点精析】利用三角形的内切圆与内心对题目进行判断即可得到答案,需要熟知三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.
练习册系列答案
相关题目
【题目】为了了解某一景点等候检票的时间,随机调查了部分游客,统计了他们进入该景点等候检票的时间,并绘制成如图表.
等候时间x(min) | 频数(人数) | 频率 |
10≤x<20 | 8 | 0.2 |
20≤x<30 | 14 | a |
30≤x<40 | 10 | 0.25 |
40≤x<50 | b | 0.125 |
50≤x<60 | 3 | 0.075 |
合计 | 40 | 1 |
(1)这里采用的调查方式是 (填“普查”或“抽样调查”),样本容量是 ;
(2)表中a= ,b= ,并请补全频数分布直方图;
(3)根据上述图表制作扇形统计图,则“40≤x<50”所在扇形的圆心角度数是 °.