题目内容

【题目】已知:如图,点N为△ABC的内心,延长AN交BC于点D,交△ABC的外接圆于点E.
(1)求证:EB=EN=EC;
(2)求证:NE2=AEDE.

【答案】证明:(1)连接BN,
∵点N为△ABC的内心,
∴∠1=∠2,∠3=∠4.
∴∠BCE=∠1,
∴EB=EC.
∵∠5与∠2都是弧EC所对的圆周角,
∴∠5=∠2=∠1.
∴∠4+∠5=∠3+∠1.
∵∠NBE=∠4+∠5,∠BNE=∠3+∠1,
∴∠NBE=∠BNE.
∴EB=EN.
∴EB=EN=EC.
(2)由(1)知∠5=∠2=∠1,∠BED=∠AEB,
∴△BED∽△AEB.

即BE2=AEDE.
∵EB=EN,
∴NE2=AEDE.

【解析】点N为△ABC的内心,易证EB=EC,只需证明EB=EN,或EN=EC,可以通过等角对等边得出;欲证NE2=AEDE,即证BE2=AEDE,可以通过证明△BED∽△AEB得出.
【考点精析】利用三角形的内切圆与内心对题目进行判断即可得到答案,需要熟知三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网