题目内容
【题目】如图,抛物线y=﹣ x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.
(1)求抛物线的解析式;
(2)若PA:PB=3:1,求一次函数的解析式;
(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.
【答案】
(1)
解:∵抛物线的对称轴为x=1,
∴﹣ =1,解得:m= .
将点A(2,3)代入y=﹣ x2+ x+n中,
3=﹣1+1+n,解得:n=3,
∴抛物线的解析式为y=﹣ x2+ x+3
(2)
解:∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,
∴yA﹣yP=3yB﹣yP,
又∵点P为x轴上的点,点A(2,3),
∴yB=1.
当y=1时,有﹣ x2+ x+3=1,
解得:x1=﹣2,x2=4(舍去),
∴点B的坐标为(﹣2,1).
将点A(2,3)、B(﹣2,1)代入y=kx+b中,
,解得: ,
∴一次函数的解析式y= x+2
(3)
解:假设存在,设点C的坐标为(1,r).
∵k>0,
∴直线AP的解析式为y= x+2.
当y=0时, x+2=0,
解得:x=﹣4,
∴点P的坐标为(﹣4,0),
当x=1时,y= ,
∴点D的坐标为(1, ).
令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.
∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,
∴∠DCF=∠EPF.
在Rt△CDF中,tan∠DCF=tan∠EPF= ,CD= ﹣r,
∴CD= CF= |r|= ﹣r,
解得:r=5 ﹣10或r=﹣5 ﹣10.
故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5 ﹣10)或(1,﹣5 ﹣10)
【解析】(1)根据抛物线的对称轴为x=1可求出m的值,再将点A的坐标代入抛物线的解析式中求出n值,此题得解;(2)根据P、A、B三点共线以及PA:PB=3:1结合点A的坐标即可得出点B的纵坐标,将其代入抛物线解析式中即可求出点B的坐标,再根据点A、B的坐标利用待定系数法即可求出直线AP的解析式;(3)假设存在,设出点C的坐标,依照题意画出图形,根据角的计算找出∠DCF=∠EPF,再通过解直角三角形找出关于r的一元一次方程,解方程求出r值,将其代入点C的坐标中即可得出结论.
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.