题目内容
已知点G是△ABC的重心,GP∥BC交AC边于点P,如果BC=12,那么GP= .
【答案】分析:根据GP∥BC,即可证得:△AGP∽△ADC,然后根据重心的性质,求得
=
,然后根据相似三角形的对应边的比相等即可求解.
解答:
解:∵G是△ABC的重心,
∴
=2,
∴
=
.
∵GP∥BC,
∴△AGP∽△ADC,
∴
=
=
,
又∵CD=
BC=6,
∴GP=4.
故答案是:4.
点评:本题主要考查了相似三角形的性质,以及三角形的重心的性质,正确求得
=
是解题关键.
解答:
∴
∴
∵GP∥BC,
∴△AGP∽△ADC,
∴
又∵CD=
∴GP=4.
故答案是:4.
点评:本题主要考查了相似三角形的性质,以及三角形的重心的性质,正确求得
练习册系列答案
相关题目