题目内容
【题目】实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成. 现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?
反思:应用二元一次方程组解应用题时,要注意解题的步骤,解、设、答一个不能少,而由于未知数有两个,则必须根据题意找出两个等量关系.
【答案】用20张做侧面,6张做底面才可以使得刚好配套,没有剩余
【解析】
设x张大纸板做侧面,y张大纸板做底面才可以使得刚好配套,没有剩余,根据一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,列出方程组,求出x,y的值即可.
解:设x张大纸板做侧面,y张大纸板做底面刚好配套,没有剩余,根据题意得:
,
解方程组得:.
答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.
故答案为:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.
练习册系列答案
相关题目
【题目】现要把192吨物资从我市运往甲、乙两地,用大、小两种货车共18辆恰好能一次性运完这批物资.已知这两种货车的载重量分别为14吨/辆和8吨/辆,运往甲、乙两地的运费如表:
运往地 | 甲地(元/辆) | 乙地(元/辆) |
大货车 | 720 | 800 |
小货车 | 500 | 650 |
(1)求这两种货车各用多少辆?
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式;
(3)在(2)的条件下,若运往甲地的物资部少于96吨,请你设计出使总运费最低的货车调配方案,并求出最少总运费.