题目内容
【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它由四个全等的直角三角形拼接而成.点E,F,G,H分别是AF,BG,CH,DE的中点,点M,N,P,Q分别是HE,EF,FG,GH上的中点,且四边形MNPQ是正方形,已知正方形ABCD的面积为20,则正方形MNPQ的面积是( ).
A.2B.1C.D.
【答案】A
【解析】
由E为AF的中点,得到AE为AF的一半,由题意得到AE为DE的一半,根据正方形ABCD的面积求出边长,在直角三角形AED中,设AE=x,则DE=2x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出正方形EFGH的边长,进而求出它的面积,根据正方形MNQP为正方形EFGH的中点四边形,面积为正方形EFGH的一半,求出即可.
∵E为AF的中点,DE=AF,
∴AE=DE,
∵正方形ABCD面积为20,∴AD=2,
在Rt△ADE中,设AE=x,则DE=2x,
根据勾股定理得:AD2=AE2+DE2,即20=x2+4x2,
解得:x=2,
∴AE=EF=2,
∴正方形EFGH的面积为4,
∵正方形MNQP为正方形EFGH的中点四边形,
∴正方形MNQP的面积为2.
故选:A
【题目】今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 | 成绩(s) | 频数(人数) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根据以上信息,解答以下问题:
(1)表中的x= ;
(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
【题目】已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).
(1)C的值为_______;
(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;
|
|
|
| ||||
|
|
(3)根据所画图像,写出y>0时x的取值范围是_____.