题目内容
【题目】今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 | 成绩(s) | 频数(人数) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根据以上信息,解答以下问题:
(1)表中的x= ;
(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
【答案】(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为.
【解析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;
(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;
(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.
(1)∵被调查的学生总人数为6÷15%=40人,
∴x=40﹣(4+16+6)=14,
故答案为:14;
(2)∵m%=×100%=10%,n%=×10%=40%,
∴m=10、n=40,
C等级对应的扇形的圆心角为360°×40%=144°,
故答案为:10、40、144;
(3)列表如下:
a1 | a2 | b1 | b2 | |
a1 | a2,a1 | b1,a1 | b2,a1 | |
a2 | a1,a2 | b1,a2 | b2,a2 | |
b1 | a1,b1 | a2,b1 | b2,b1 | |
b2 | a1,b2 | a2,b2 | b1,b2 |
由表可知共有12种等可能结果,其中恰好选取的是a1和b1的有2种结果,
∴恰好选取的是a1和b1的概率为.