题目内容

如图,抛物线经过A(,0),C(2,-3)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式及顶点坐标;
(2)若将此抛物线平移,使其顶点为点D,需如何平移?写出平移后抛物线的解析式;
(3)过点P(m,0)作x轴的垂线(1≤m≤2),分别交平移前后的抛物线于点E,F,交直线OC于点G,求证:PF=EG.
(1),();(2)向左个单位长度,再向上平移个单位长度.平移后的抛物线解析式为:.(3)证明见解析.

试题分析:(1)把A(-1,0),C(2,-3)代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组求出b、c的值,即可求出抛物线的解析式,再利用配方法将一般式化为顶点式,即可求出顶点坐标;
(2)先求出抛物线y=x2-x-2与y轴交点D的坐标为(0,-2),再根据平移规律可知将点(,?)向左平移个单位长度,再向上平移个单位长度,可得到点D,然后利用顶点式即可写出平移后的抛物线解析式为:y=x2-2;
(3)先用待定系数法求直线OC的解析式为y=-x,再将x=m代入,求出yG=?m,yF=m2-2,yE=m2- m-2,再分别计算得出PF=-(m2-2)=2-m2,EG=yG-yE=2-m2,由此证明PF=EG.
(1)解:把A(,0),C(2,-3)代入得:
,解得: 
∴抛物线的解析式为:

∴其顶点坐标为:().
(2)、解:向左个单位长度,再向上平移个单位长度.
平移后的抛物线解析式为:. 
(3)证明:用待定系数法求直线OC的解析式为y = -x,
当x=m时, =,则PF=-()=2-
当x=m时,==
则EG==2-
∴PF=EG.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网