题目内容

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2
其中正确结论是(  )

A.②④
B.①④
C.①③
D.②③

【答案】B
【解析】∵抛物线的开口方向向下,
∴a<0;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,即b2>4ac,
故①正确
由图象可知:对称轴x=﹣=﹣1,
∴2a﹣b=0,
故②错误;
∵抛物线与y轴的交点在y轴的正半轴上,
∴c>0
由图象可知:当x=1时y=0,
∴a+b+c=0;
故③错误;
由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2
故④正确.
故选B.
【考点精析】认真审题,首先需要了解二次函数图象以及系数a、b、c的关系(二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网