题目内容

如图,正方形ABCD的边长为1,当点E在边BC上运动时(不与正方形的顶点重合),连接AE,过点E作EF⊥AE交CD于点F.设BE=x,CF=y,求下列问题:
(1)证明△ABE△ECF;
(2)求出y关于x的函数关系式;
(3)试求当x取何值时?y有最大或最小值,是多少?
(1)证明:∵正方形ABCD,
∴∠B=∠C,∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠BEA+∠CEF=90°,
∴∠BAE=∠CEF,
∴△ABE△ECF.

(2)∵△ABE△ECF,
AB
CE
=
BE
CF

∵BE=x,CF=y,正方形ABCD的边长为1,
则CE=1-x,
1
1-x
=
x
y

∴y=-x2+x.

(3)由(2)得y=-x2+x,
y=-(x-
1
2
)
2
+
1
4

∴可知抛物线的顶点为(
1
2
1
4
),开口向下,
∴x=
1
2
时,y最大=
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网