题目内容
【题目】如图,在ABCD中,E为边CD上一点,将沿AE折叠至处,与CE交于点若,,则的大小为________.
【答案】
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
解:∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°,
∴∠FED′=108°-72°=36°;
故答案为:36°.
练习册系列答案
相关题目
【题目】设边长为的正方形的中心在直线上,它的一组对边垂直于直线,半径为的圆的圆心在直线上运动,、两点之间的距离为.
()如图①,当时,填表:
、、之间的数量关系 | ⊙与正方形的公共点个数 |
__________ | |
__________ | |
__________ |
()如图②,⊙与正方形有个公共点、、、、,求此时与之间的数量关系:
()由()可知,、、之间的数量关系和⊙与正方形的公共点个数密切相关.当时,请根据、、之间的数量关系,判断⊙与正方形的公共点个数.
()当与之间满足()中的数量关系时,⊙与正方形的公共点个数为__________.