题目内容

【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.

(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.

【答案】
(1)证明:∵AG∥DC,AD∥BC,

∴四边形AGCD是平行四边形,

∴AG=DC,

∵E、F分别为AG、DC的中点,

∴GE= AG,DF= DC,

即GE=DF,GE∥DF,

∴四边形DEGF是平行四边形


(2)证明:连结DG,

∵四边形AGCD是平行四边形,

∴AD=CG,

∵G为BC中点,

∴BG=CG=AD,

∵AD∥BG,

∴四边形ABGD是平行四边形,

∴AB∥DG,

∵∠B=90°,

∴∠DGC=∠B=90°,

∵F为CD中点,

∴GF=DF=CF,

即GF=DF,

∵四边形DEGF是平行四边形,

∴四边形DEGF是菱形.


【解析】(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可;(2)连接DG,求出∠DGC=90°,求出DF=GF,根据菱形的判定推出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网